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Phenomics for biotic stress resistance is defined as the study of host plant resistance through automated
trait analysis to generate phenotypic data. One of the greatest ways to control diseases that are both
economically feasible and relevant over wide areas is to use resistant cultivars. To quantify phenotypic
attributes using various sensors mounted on a platform, photos of an experimentally constructed field or a
single plant must be taken. Additional image and data analysis is carried out using various software
programmes. Plant resistance and pathogenicity or pathogen aggressiveness in a variety of genotypes

ABSTRACT analyzed through phenomics can be linked genomically with the identification of genes or Quantitative Trait
Loci associated with resistance. Many automated tools that can be used for large-scale phenotyping to
evaluate disease in field conditions have been developed and tested. This will help to meet the increasing
demand for research into the development of new cultivars, yield increases, and disease-resistant cultivars
that will support agricultural production in the future and ensure food security.
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method of disease control is the cultivation and use of
resistant cultivars, which can be applied across wide
regions, are extremely effective against infections when
properly managed, and do not endanger human health or
the environment. Therefore, among the numerous control
strategies, using resistant cultivars is always the first
choice. In many circumstances, this is sufficient to
manage the losses brought on by the primary diseases
that impact a particular crop, and in other situations, it
can help with additional supplementary phytosanitary
measures. As a result, disease resistance is regarded as
a “key agronomic trait” of novel cultivars, and any

Introduction

By 2050, there will likely be nine billion people on the
planet, meaning that present food production will need to
double to feed everyone. (Joshi et al., 2016) The
challenge provided by many biotic and abiotic pressures
connected to global food production has been worse
recently due to decreasing climatic conditions. (Pereira
2016). Despite unfavourable environmental
circumstances and a finite amount of cultivable land, the
world’s effort to feed the expanding human population
necessitates a steady growth in crop production. (Furbank

and Tester 2011).

Plant diseases and other productivity-inhibiting
variables need to be researched and managed more
thoroughly to stop annual losses in a variety of crops
around the world. The most sensible and cost-efficient

breeding effort should prioritize the development of these
traits. Therefore, through the integration of genotyping
and phenotyping, a thorough understanding of the intricate
relationships between plants, pathogens, hosts, and
humans is essential to the success of genetic breeding.
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To keep up with the advancements in high throughput
genotyping, a technology race has been taking place in
recent years, leading to the development of large-scale
techniques and tools for high-throughput phenotyping.

Phenotyping has been transformed by high-throughput
phenotyping technology, which is expanding quickly. It
uses automated sensing, data collection, and analysis, and
depends on automated trait analysis to produce phenotypic
data. Plant breeding efforts have accelerated with the
use of high-throughput phenotyping, which allows for the
screening of a large number of plants at different
phenological stages. This means that early on, desired
features can be quickly screened for, removing the need
to wait for plant maturity in the field. It may be applied in
controlled and natural environments both in the lab and
the outdoors. Plant performance may be quickly assessed
in the field, which promotes a thorough life cycle
assessment using less harmful methods. Furthermore, in
high-throughput facilities with controlled environments,
data recording is enhanced and fewer replications are
needed. This review focuses on large-scale phenotyping
of plant disease resistance through phenomics, which
combines breakthroughs in imaging techniques,
automation through software, and plant science to
characterize plant responses to numerous environmental
conditions.

Components of Phenomics for Plant Resistance
and Pathogen Virulence

The following are the fundamental components of
phenotyping, which can be implemented to any type of
crop, disease, resistance type, and either an outdoor or
indoor environment (Fig. 1).

1. Choice of imaging technique and sensor type
Choice of platform

Experimental design used

Choice of image processing software

Data management and choice of storage and
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Fig. 1: Components of Phenomics.

Imaging Techniques

Electromagnetic waves are regarded as detection
information carriers. Plants in good health interact
differently with electromagnetic radiation than do plants
in diseased conditions. Each constituent of plant tissues
and cells has absorbance, reflectance, and transmittance
characteristics that are unique to particular wavelengths
(Li et al., 2014). Usually, imaging techniques for
phenomics include RGB imaging, fluorescence imaging,
thermal imaging, spectroscopic imaging, and techniques
involving 3D imaging (MRI, PET, CT, LIDAR, and stereo
vision) (Table 1).

Visible Light Imaging

Visible images are derived from digital images and
are meant to resemble human vision, which is sensitive
to visible light wavelengths (400—750 nm). The responses
that can be estimated through visual imaging includes,
such as shoot biomass (Golzarian et al., 2011), yield traits
(Duan et al., 2011), panicle traits (lkeda et al., 2010),
imbibition and germination rates (Dias et al., 2011), leaf
morphology (Hoyos-Villegas et al., 2014), seedling vigour
(Walter et al., 2012), coleoptile length and biomass at
anthesis (Richards et al., 2010), seed morphology (Chern
et al., 2007), and root architecture (lyer-Pascuzzi et al.,
2010).

Fluorescence Imaging

Fluorescence imaging is the main method used for
disease detection in leaves. The first metabolic processes
impacted by disease infection are those that occur during
the transition from photosynthetic to respiration and the
derivation of nutrients from flow. Fluorescence imaging
is the primary method used to monitor this process. Light
that is released at certain shorter wavelengths when
radiation is absorbed is known as fluorescence.
Fluorescence imaging is frequently employed in a
controlled environment because modulated fluorescence
demands a significant amount of power for quick
illumination. To track the impacts of plant diseases and
identify early stress responses to abiotic and biotic
variables before a drop in growth can be observed,
fluorescence imaging can quantify photosynthesis (Li et
al., 2014). Swarbrick et al., (2006) utilized chlorophyll
fluorescence to study the resistance response of barley
leaves infected with Blumeria graminis. Throughout a
vulnerable encounter, photosynthesis decreased gradually
on the entire leaf. By employing chlorophyll fluorescence
imaging to screen sugar beet lines with varying
susceptibilities to Cercospora beticola infection, Chaerle
etal., (2007) demonstrated that variations in fluorescence
intensity were quantified between susceptible and
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Table1: Types of images, and examples of their application used in several studies for quantifying the severity of diseases.

Thermal infrared

Image Patho systems
" Barley-Erisyphe graminis (Newton 1989)
" Maize-Fusarium spp. (Todd and Kommendahl 1994)
" Potato- (Niemira et al., 1999)
" Maize-maize streak virus (Martin et al., 1999)
" Oats-Puccinia coronata (Diaz- Lago etal., 2003).
RGB " Vine-Plamopara viticola (Boso et al., 2004)
" Rye and triticale-Magnaporthe oryzae (Maciel et al., 2013)
" Sugarcane-Cercospora longipes (Patil and Bodhe 2011)
" Cotton-Bacterial angular (Sugiuraetal., 2016)
" Cotton-Ascochyta blight (Bock et al., 2010 and Wijekoon et al., 2008)
" Apple tree-Venturia inaequalis (Delalieux et al., 2007)
" Sweet potato-(Cercospora, Erysiphe, Uromyces) (Mahlein et al., 2012)
Hyperspectral " African oil palm-Ganoderma boniense (Lelong etal., 2010)
" Wheat-Puccinia striiformis f. sp. tritici (Arora et al., 2013)
" Pumpkin-Pseudoperonospora cubensis (Oerke et al., 2006)
" Vine-Plasmopara viticola (Stoll et al., 2008)

" Apple tree-Venturia inaequalis (Oerke et al., 2011)
" Olive tree-Verticillium (Calderon et al., 2013)

" Sweet potato-Cercospora beticola (Chaerle et al., 2007)
Chloroohvll fluorescence " Millet-Puccinia substriata (Costa et al., 2009)
Phy " Bean plant-Xanthomonas fuscans pv. fuscans (Rousseau et al., 2013)

" Wheat-Fusarium spp. (Bauriegel and Herppich 2014)

Visible near-infrared

" Sugarcane- Orange rust (Apan et al., 2004)
" Wheat- Head blight (Bauriegel and Herppich 2014)

Near-infrared ]

Barley- Powdery mildew (Kuska et al., 2015)

Short wave infrared ]

" Maize- Phaeosphaeria leaf spot (Adam et al., 2017)
Wheat- Powdery mildew (Delalieux et al., 2005)
" Wheat- Leaf rust (Wahabzada et al., 2015)

resistant plants. Burling et al., (2010) used fluorescence
imaging to investigate variations in the degree of wheat
cultivar resistance to Puccinia triticina and showed that
the quantum yield of non-regulated energy dissipation in
PSII can be used to distinguish between them. A more
noticeable variation in parameter values.

Thermal Imaging

Reduced rates of photosynthesis and transpiration
are common responses to biotic stressors. Therefore,
using thermal imaging to remotely sense leaf temperature
can be a dependable method of identifying changes in a
plant’s physiological state. It makes it possible to see
infrared radiation, which shows the temperature
distribution of an object. The most widely utilized
wavelengths for thermal imaging are 3-5 um and 7-14
um, while the sensitive spectral range of thermal cameras
is 3-14 um (Li et al., 2014).

Imaging Spectroscopy

The interaction of solar radiation produced with plants
is used in plant imaging spectroscopy. A significant amount

of incoming energy is reflected by leaves in the near-
infrared (NIR; 700-1200 nm) due to scattering inside the
leaf mesophyll. The absorption bands in the infrared region
are utilized to characterize different water indices and
multispectral and hyperspectral measurements are
frequently employed to estimate the canopy water content
as an indicator of water condition (Li et al., 2014). As
demonstrated by the findings of an investigation by
Sabatier et al., (2013) used near infrared reflectance
spectroscopy as a high-throughput screening tool for pest
and disease resistance in a sugarcane breeding
programme, the hyperspectral measurement makes it a
promising method for determining the severity of damage
caused by insects. Using GreenSeeker, Aroraetal., (2014)
assessed vegetation indices for the precision phenotyping
of quantitative stripe rust reactions in 120 genotypes of
Indian wheat. The results show that temporal ground-
based NDVI is the most useful method for examining
the quantitative rust reaction, with a significant regression
coefficient (r> = 0.63) between the NDVI data and the
area under the disease progress curve.
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3D Imaging for Plants

Currently, light detection and ranging (LIDAR)
sensors, also known as laser scanners, and stereo vision
are the most often utilized image sensor technologies for
3D plant mapping.

High-resolution topographic maps and extremely
precise estimations of the height, cover, and canopy
structures of plants can be produced using LIDAR
technologies. Moreover, laser scanning has potential in
plant pathology and allows the assessment of
photosynthetic efficiency when paired with fluorescence
(Lietal., 2014). Stereo vision was used by Mizuno et al.
(2007) for wilt detection and Takizawa et al., (2005) to
construct 3D models of plants.

Tomographic Imaging by MRI, PET, or CT

MRI is the acronym for “Nuclear Magnetic
Resonance Imaging,” a technique that utilizes nuclear
magnetic resonance to create images and identify signals
coming from 1H, 13C, 14N, and 15N.

A nuclear imaging method called PET (positron
emission tomography) creates a three-dimensional image
or picture of a working process. It finds pairs of gamma
rays that are released by a radionuclide that releases
positrons. Labeled chemicals like 1C (Jahnke et al.,
2009), 3N (Kiyomiya et al., 2001), or %?Fe (Tsukamoto
et al., 2009) can be imaged noninvasively to determine
their distribution.

A technique called X-ray computed tomography
creates tomographic images of particular sections of the
scanned item using computer-processed X-rays. It may
create a 3D image of an object’s interior from a large
number of 2D radiographic images recorded around a
single axis of rotation. (Liet al., 2014). For high throughput
plant phenotyping, however, the tomographic imaging
systems still have poor throughput, and additional
improvements in picture segmentation and reconstruction
are needed.

Platforms

A phenotyping platform is characterized as one that
can photograph a minimum of hundreds of plants every
day (Fahlgren et al., 2015) based on the installation of
several desired sensors that can screen both individual
plants and entire fields. Due to patent protection, the
underlying hardware and software of the large
phenotyping platforms, which are primarily produced by
commercial companies cannot be altered to accommodate
particular research requirements. (Czedik-Eysenberg et
al., 2018). As a result, a variety of self-developed and
customized commercial phenotyping platforms are being

introduced. Phenotyping platforms can be classified under
three scenarios, (1) aerial based (2) ground-based
proximity based (3) greenhouse based (Li et al., 2021).
Fig. 2 shows the different types of platforms that can be
used under these conditions.

Experimental Design

There are no particular references for the most
common experimental designs utilized in large-scale
phenotyping. Numerous studies have emphasized the
need to design trials to maximize the accuracy of the
phenotypic data (Araus and Cairns 2014; Fiorani and
Schurr 2013; Cobb et al., 2013; Poorter et al., 2012).
According to field research, certain designs like the
augmented block design (ABD), incomplete block design
(IBD), and randomized complete block design (RCBD)
as well as other adjustments could improve phenotyping
effectiveness.

In the early stages of a breeding programme, when
there is still a significant amount of material to be analyzed
and primarily, when there is minimal propagation material,
ABD is most frequently utilized. On the other hand,
RCBD is more frequently employed in the later phases
of breeding programmes when more trustworthy results
regarding the examined treatments are needed, in addition
to having enough propagation material to do multiple
replicates. An incomplete Block Design is utilized when
the block size in the greenhouse or field is smaller than
the total number of plants or treatments (Peternelli and
Resende, 2015).

Imaging Processing Pipeline

Imaging analysis can be done using various open-
source software or otherwise. The imaging processing
pipeline is software-specific but fundamentally includes
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Fig. 2: Types of platforms used in phenomics.




Phenomics for Biotic Stress Resistance in Crop Plants 773

the following operations. The process of processing
images begins with image retrieval, which includes
importing the photos from the database into the
programme used for image analysis and aligning them
using reference points created by image stacking. All of
the photos of a single object taken at various times are
made into an image stack. The second phase is called
image preparation, and it involves applying filters to reduce
noise or sharpen images. The image is separated into
objects of interest and objects that should be excluded
from the study during the image segmentation process.
Binary images are segmented images where all pixels
set to O are scored as 0, and all pixels that relate to the
object of interest are rated as 1. Noise reduction, or
morphological operations, is the process of repairing the
binary pictures’ flaws. The subsequent stage, known as
picture composition, involves assembling the separate
parts of an object to form the whole. Quantification of an
object’s area, height, width, and other dimensions is a
necessary step in the image description process. The
process of colour classification entails removing the
subject, in this case, the plant, from the original RGB
picture. As a result, using the colour information from
the original image, the plant portion may be separated
into various sections, which can then be quantified to
quantify various morphological characteristics (Singh and
Singh 2015). Image processing software used in several
studies for quantifying the severity of diseases, ASSESS,
Image Pro Software, JL Genias, Sigma Scan, Sigma Scan
Pro software, Skye-Probetech, Soft Imaging Systems
GmBH, Microsoft C compiler, Image09, Visual C++,
QUANT, ER Mapper, EASI/PACE, ENVI, ERDAS
Imagine, GRASS GIS, IDRISI, PG Steamer, TNT Mips,
Image Intelligence TM Suite, Remote View (Bock et
al., 2010).

Data Management and Storage

The development of phenotyping methods in the last
few years has produced datasets with data from various
sensors at various scales and organizational levels. These
datasets can be mined or pooled in meta-analyses to
produce new insights if they are made available to the
scientific community. However, getting them accessible
is a big problem for the plant phenomics community.

Dealing with the massive volume of data produced
by phenotyping devices and facilities is the first issue.
Big data presents a challenge because of its complexity,
which can be summed up as follows:

() The Volume given the exponential increase in
data obtained through phenotyping techniques;

(i) The Variety of data due to the multiplicity of data
sources;

(i) The Velocity, given the need to give scientists
quick and effective tools for visualizing and
analyzing large amounts of experimental data;

(iv) The Value, given that phenomics experiments are
costly and nearly impossible to repeat precisely;
and

(v) The Veracity, which is tied to the requirement to
track data such as the steps, Calibration of
sensors, parameter settings, and methods that
have been employed to produce a particular result
(Roitsch et al., 2019). Wilkinson et al. (2016)
introduced the FAIR principle to organize and
integrate a large amount of data, allowing data
to be found and reused across various persons
or groups. FAIR stands for identifiable, reusable,
findable, and available.

The second issue is the requirement of facilitating
database interoperability among diverse scientific
communities. Steps in this direction, allowing data
interoperability while maintaining security and privacy,
include the farmer-focused Open Ag Data Alliance and
the public-private alliance 1AA (International Agro-
informatics Alliance) at the University of Minnesota
(Gustafson et al., 2017).

In the big data-driven agricultural world, one of the
main worries is the quality of the data. According to
Shakoor et al., (2019), there is general agreement that
“garbage in” of primary data quality leads to “garbage
out” of final data quality since low-quality positive images
utilized in machine learning models could produce
inaccurate predictions. For future phenomics research
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phenomics for producing resistant cultivars
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projects, quality protocols need to be established and
standardized. Quality assurance and checks also become
more crucial for sensor accuracy and consistency.

Identification of genes associated with resistance
using plant phenomics

The creation of a germplasm bank with a fairly wide
genetic basis that contains sources of susceptibility and
resistance to the primary diseases impacting the crop in
question is the first step in the identification of genes
associated with resistance. Crosses between parents who
are susceptible to and resistant to one or more diseases
give rise to mapping populations like F2, RIL, and NIL.
Genomics may make it simple to determine these
populations’ genotypes. Different phenotypical features
are quantified and analyzed individually in the phenomics
process. The identification of the relationship between
plant genes (genotype) and resistance (phenotype) using
QTL analysis can therefore be applied to molecular
marker-assisted genotype screening and selection of
genotypes exhibiting vertical or horizontal resistance (Fig.
3).

Conclusion and Future Thrust

Phenomics studies of plant diseases have a bright
future ahead of them. These studies seek to better
understand the intricate interactions between humans,
environment, and pathogens, as well as to identify genes
and QTL associated with pathogenicity and resistance.
With this knowledge, genetic breeding programmes aimed
at producing new cultivars resistant to a variety of crop
diseases can be accelerated. Despite the challenges
involved, phenotyping is crucial since methods, platforms,
sensors, tools, software, and devices are already available
for the large-scale identification and quantification of
diseases in the lab, greenhouse, and field. But significantly
more widespread adoption, popularisation, and distribution
of these instruments are needed. To fully benefit from
using the range of phenomics technology presently
available, plant breeders with holistic perspectives and
experience, particularly in phytopathology, epidemiology,
genomics, and breeding need to be further involved. This
will help enhance food sustainability.
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